Cargando…
GENRE (GPU Elastic-Net REgression): A CUDA-Accelerated Package for Massively Parallel Linear Regression with Elastic-Net Regularization
Autores principales: | Khan, Christopher, Byram, Brett |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269246/ https://www.ncbi.nlm.nih.gov/pubmed/35813274 http://dx.doi.org/10.21105/joss.02644 |
Ejemplares similares
-
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Data integration by multi-tuning parameter elastic net regression
por: Liu, Jie, et al.
Publicado: (2018) -
Identifying Factors Predicting Kidney Graft Survival in Chile Using Elastic-Net-Regularized Cox’s Regression
por: Magga, Leandro, et al.
Publicado: (2022) -
eNetXplorer: an R package for the quantitative exploration of elastic net families for generalized linear models
por: Candia, Julián, et al.
Publicado: (2019)