Cargando…
Quality Prediction and Abnormal Processing Parameter Identification in Polypropylene Fiber Melt Spinning Using Artificial Intelligence Machine Learning and Deep Learning Algorithms
Melt spinning machines must be set up according to the process parameters that result in the best end product quality. In this study, artificial intelligence algorithms were employed to create a system that detects abnormal processing parameters and suggests strategies to improve quality. Polypropyl...
Autores principales: | Gope, Amit Kumar, Liao, Yu-Shu, Kuo, Chung-Feng Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269265/ https://www.ncbi.nlm.nih.gov/pubmed/35808784 http://dx.doi.org/10.3390/polym14132739 |
Ejemplares similares
-
Structure and Properties of a Metallocene Polypropylene Resin with Low Melting Temperature for Melt Spinning Fiber Application
por: Xu, Renwei, et al.
Publicado: (2019) -
Machine learning and artificial intelligence
por: Joshi, Ameet V
Publicado: (2019) -
Artificial intelligence, machine learning, and deep learning
por: Campesato, Oswald
Publicado: (2020) -
Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate
por: Mirjalili, Fereshteh, et al.
Publicado: (2013) -
Artificial intelligence and machine learning fundamentals
por: Nagy, Zsolt
Publicado: (2018)