Cargando…

Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport

Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Mikami, Norika, Konya, Mayu, Enoki, Shinichi, Suzuki, Shunji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269297/
https://www.ncbi.nlm.nih.gov/pubmed/35807646
http://dx.doi.org/10.3390/plants11131694
_version_ 1784744201067429888
author Mikami, Norika
Konya, Mayu
Enoki, Shinichi
Suzuki, Shunji
author_facet Mikami, Norika
Konya, Mayu
Enoki, Shinichi
Suzuki, Shunji
author_sort Mikami, Norika
collection PubMed
description Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated temperature conditions. In this study, we investigated the effects of geraniol on anthocyanin accumulation in grape berry skins of field-grown grapevines and elucidated the molecular mechanisms of the geraniol-triggered anthocyanin accumulation. Geraniol-treated bunches showed enhanced anthocyanin accumulation in berry skins at harvest (50 days after treatment). Geraniol treatment upregulated the transcription of MybA1 and UFGT, which encode the key factors in anthocyanin biosynthesis, in berry skins. Geraniol treatment also improved anthocyanin accumulation in grape cultured cells. We isolated grape ATP-binding cassette transporter G family protein VvABCG40, encoding abscisic acid (ABA) membrane transporter, from geraniol-treated grape cultured cells. VvABCG40 transcription was upregulated in berry skins 40 days after treatment. Geraniol treatment also upregulated the transcription of VvPP2C24, which encodes ABA-responsible type 2C protein phosphatases, in berry skins, but not the transcription of VvNCED1, which encodes a key enzyme in ABA biosynthesis. Taken together, geraniol-triggered anthocyanin accumulation in berry skins is promoted by ABA membrane transport and not by ABA biosynthesis, and geraniol treatment of field-grown grape bunches may contribute to alleviating the poor coloration of berry skin as a novel technique in viticulture.
format Online
Article
Text
id pubmed-9269297
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92692972022-07-09 Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport Mikami, Norika Konya, Mayu Enoki, Shinichi Suzuki, Shunji Plants (Basel) Article Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated temperature conditions. In this study, we investigated the effects of geraniol on anthocyanin accumulation in grape berry skins of field-grown grapevines and elucidated the molecular mechanisms of the geraniol-triggered anthocyanin accumulation. Geraniol-treated bunches showed enhanced anthocyanin accumulation in berry skins at harvest (50 days after treatment). Geraniol treatment upregulated the transcription of MybA1 and UFGT, which encode the key factors in anthocyanin biosynthesis, in berry skins. Geraniol treatment also improved anthocyanin accumulation in grape cultured cells. We isolated grape ATP-binding cassette transporter G family protein VvABCG40, encoding abscisic acid (ABA) membrane transporter, from geraniol-treated grape cultured cells. VvABCG40 transcription was upregulated in berry skins 40 days after treatment. Geraniol treatment also upregulated the transcription of VvPP2C24, which encodes ABA-responsible type 2C protein phosphatases, in berry skins, but not the transcription of VvNCED1, which encodes a key enzyme in ABA biosynthesis. Taken together, geraniol-triggered anthocyanin accumulation in berry skins is promoted by ABA membrane transport and not by ABA biosynthesis, and geraniol treatment of field-grown grape bunches may contribute to alleviating the poor coloration of berry skin as a novel technique in viticulture. MDPI 2022-06-27 /pmc/articles/PMC9269297/ /pubmed/35807646 http://dx.doi.org/10.3390/plants11131694 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mikami, Norika
Konya, Mayu
Enoki, Shinichi
Suzuki, Shunji
Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
title Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
title_full Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
title_fullStr Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
title_full_unstemmed Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
title_short Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
title_sort geraniol as a potential stimulant for improving anthocyanin accumulation in grape berry skin through aba membrane transport
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269297/
https://www.ncbi.nlm.nih.gov/pubmed/35807646
http://dx.doi.org/10.3390/plants11131694
work_keys_str_mv AT mikaminorika geraniolasapotentialstimulantforimprovinganthocyaninaccumulationingrapeberryskinthroughabamembranetransport
AT konyamayu geraniolasapotentialstimulantforimprovinganthocyaninaccumulationingrapeberryskinthroughabamembranetransport
AT enokishinichi geraniolasapotentialstimulantforimprovinganthocyaninaccumulationingrapeberryskinthroughabamembranetransport
AT suzukishunji geraniolasapotentialstimulantforimprovinganthocyaninaccumulationingrapeberryskinthroughabamembranetransport