Cargando…

Improving the Carotenoid Content in Maize by Using Isonuclear Lines

Carotenoids are important biologically active compounds in the human diet due to their role in maintaining a proper health status. Maize (Zea mays L.) is one of the main crops worldwide, in terms of production quantity, yield and harvested area, as it is also an important source of carotenoids in hu...

Descripción completa

Detalles Bibliográficos
Autores principales: Calugar, Roxana Elena, Muntean, Edward, Varga, Andrei, Vana, Carmen Daniela, Has, Voichita Virginia, Tritean, Nicolae, Ceclan, Loredana Anca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269311/
https://www.ncbi.nlm.nih.gov/pubmed/35807583
http://dx.doi.org/10.3390/plants11131632
Descripción
Sumario:Carotenoids are important biologically active compounds in the human diet due to their role in maintaining a proper health status. Maize (Zea mays L.) is one of the main crops worldwide, in terms of production quantity, yield and harvested area, as it is also an important source of carotenoids in human nutrition worldwide. Increasing the carotenoid content of maize grains is one of the major targets of the research into maize breeding; in this context, the aim of this study was to establish the influence of some fertile cytoplasm on the carotenoid content in inbred lines and hybrids. Twenty-five isonuclear lines and 100 hybrids were studied for the genetic determinism involved in the transmission of four target carotenoids: lutein, zeaxanthin, β-cryptoxanthin and β-carotene. The analysis of carotenoids was carried out using high performance liquid chromatography using a Flexar system with UV-VIS detection. The obtained data revealed that the cytoplasms did not have a significant influence on the carotenoid content of the inbred lines; larger differences were attributed to the cytoplasm × nucleus interaction. For hybrids, the cytoplasmic nuclear interactions have a significant influence on the content of lutein, zeaxanthin and β-cryptoxanthin. For the cytoplasm × nucleus × tester interactions, significant differences were identified for all traits.