Cargando…
A Robust Deep Neural Network for Rolling Element Fault Diagnosis under Various Operating and Noisy Conditions
This study proposes a new intelligent diagnostic method for bearing faults in rotating machinery. The method uses a combination of nonlinear mode decomposition based on the improved fast kurtogram, gramian angular field, and convolutional neural network to detect the bearing state of rotating machin...
Autores principales: | Lee, Chun-Yao, Zhuo, Guang-Lin, Le, Truong-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269328/ https://www.ncbi.nlm.nih.gov/pubmed/35808201 http://dx.doi.org/10.3390/s22134705 |
Ejemplares similares
-
Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions
por: Xue, Lang, et al.
Publicado: (2017) -
A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults
por: Shenfield, Alex, et al.
Publicado: (2020) -
Robust information propagation through noisy neural circuits
por: Zylberberg, Joel, et al.
Publicado: (2017) -
Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings
por: Duan, Jie, et al.
Publicado: (2018) -
The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings
por: Sun, Peng, et al.
Publicado: (2017)