Cargando…
Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea
Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269360/ https://www.ncbi.nlm.nih.gov/pubmed/35802564 http://dx.doi.org/10.1371/journal.pone.0267586 |
_version_ | 1784744216852692992 |
---|---|
author | Gaffey, Clare B. Frey, Karen E. Cooper, Lee W. Grebmeier, Jacqueline M. |
author_facet | Gaffey, Clare B. Frey, Karen E. Cooper, Lee W. Grebmeier, Jacqueline M. |
author_sort | Gaffey, Clare B. |
collection | PubMed |
description | Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production. |
format | Online Article Text |
id | pubmed-9269360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92693602022-07-09 Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea Gaffey, Clare B. Frey, Karen E. Cooper, Lee W. Grebmeier, Jacqueline M. PLoS One Research Article Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production. Public Library of Science 2022-07-08 /pmc/articles/PMC9269360/ /pubmed/35802564 http://dx.doi.org/10.1371/journal.pone.0267586 Text en © 2022 Gaffey et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gaffey, Clare B. Frey, Karen E. Cooper, Lee W. Grebmeier, Jacqueline M. Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea |
title | Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea |
title_full | Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea |
title_fullStr | Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea |
title_full_unstemmed | Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea |
title_short | Phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern Bering Sea |
title_sort | phytoplankton bloom stages estimated from chlorophyll pigment proportions suggest delayed summer production in low sea ice years in the northern bering sea |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269360/ https://www.ncbi.nlm.nih.gov/pubmed/35802564 http://dx.doi.org/10.1371/journal.pone.0267586 |
work_keys_str_mv | AT gaffeyclareb phytoplanktonbloomstagesestimatedfromchlorophyllpigmentproportionssuggestdelayedsummerproductioninlowseaiceyearsinthenorthernberingsea AT freykarene phytoplanktonbloomstagesestimatedfromchlorophyllpigmentproportionssuggestdelayedsummerproductioninlowseaiceyearsinthenorthernberingsea AT cooperleew phytoplanktonbloomstagesestimatedfromchlorophyllpigmentproportionssuggestdelayedsummerproductioninlowseaiceyearsinthenorthernberingsea AT grebmeierjacquelinem phytoplanktonbloomstagesestimatedfromchlorophyllpigmentproportionssuggestdelayedsummerproductioninlowseaiceyearsinthenorthernberingsea |