Cargando…
A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine
In this study, an innovative sensor was designed to detect the key combustion parameters of the marine natural gas engine. Based on the ion current, any engine structurally modified was avoided and the real-time monitoring for the combustion process was realized. For the general applicability of the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269400/ https://www.ncbi.nlm.nih.gov/pubmed/35808158 http://dx.doi.org/10.3390/s22134660 |
_version_ | 1784744227126640640 |
---|---|
author | Wang, Xiaoyan Zhou, Tanqing Dong, Quan Cheng, Zhaolin Yang, Xiyu |
author_facet | Wang, Xiaoyan Zhou, Tanqing Dong, Quan Cheng, Zhaolin Yang, Xiyu |
author_sort | Wang, Xiaoyan |
collection | PubMed |
description | In this study, an innovative sensor was designed to detect the key combustion parameters of the marine natural gas engine. Based on the ion current, any engine structurally modified was avoided and the real-time monitoring for the combustion process was realized. For the general applicability of the proposed sensor, the ion current generated by a high-energy ignition system was acquired in a wide operating range of the engine. It was found that engine load, excess air coefficient (λ) and ignition timing all generated great influence on both the chemical and thermal phases, which indicated that the ion current was highly correlated with the combustion process in the cylinder. Furthermore, the correlations between the 5 ion current-related parameters and the 10 combustion-related parameters were analyzed in detail. The results showed that most correlation coefficients were relatively high. Based on the aforementioned high correlation, the novel sensor used an on-line algorithm at the basis of neural network models. The models took the characteristic values extracted from the ion current as the inputs and the key combustion parameters as the outputs to realize the online combustion sensing. Four neural network models were established according to the existence of the thermal phase peak of the ion current and two different network structures (BP and RBF). Finally, the predicted values of the four models were compared with the experimental values. The results showed that the BP (with thermal) model had the highest prediction accuracy of phase parameters and amplitude parameters of combustion. Meanwhile, RBF (with thermal) model had the highest prediction accuracy of emission parameters. The mean absolute percentage errors (MAPE) were mostly lower than 0.25, which proved a high accuracy of the proposed ion current-based virtual sensor for detecting the key combustion parameters. |
format | Online Article Text |
id | pubmed-9269400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92694002022-07-09 A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine Wang, Xiaoyan Zhou, Tanqing Dong, Quan Cheng, Zhaolin Yang, Xiyu Sensors (Basel) Article In this study, an innovative sensor was designed to detect the key combustion parameters of the marine natural gas engine. Based on the ion current, any engine structurally modified was avoided and the real-time monitoring for the combustion process was realized. For the general applicability of the proposed sensor, the ion current generated by a high-energy ignition system was acquired in a wide operating range of the engine. It was found that engine load, excess air coefficient (λ) and ignition timing all generated great influence on both the chemical and thermal phases, which indicated that the ion current was highly correlated with the combustion process in the cylinder. Furthermore, the correlations between the 5 ion current-related parameters and the 10 combustion-related parameters were analyzed in detail. The results showed that most correlation coefficients were relatively high. Based on the aforementioned high correlation, the novel sensor used an on-line algorithm at the basis of neural network models. The models took the characteristic values extracted from the ion current as the inputs and the key combustion parameters as the outputs to realize the online combustion sensing. Four neural network models were established according to the existence of the thermal phase peak of the ion current and two different network structures (BP and RBF). Finally, the predicted values of the four models were compared with the experimental values. The results showed that the BP (with thermal) model had the highest prediction accuracy of phase parameters and amplitude parameters of combustion. Meanwhile, RBF (with thermal) model had the highest prediction accuracy of emission parameters. The mean absolute percentage errors (MAPE) were mostly lower than 0.25, which proved a high accuracy of the proposed ion current-based virtual sensor for detecting the key combustion parameters. MDPI 2022-06-21 /pmc/articles/PMC9269400/ /pubmed/35808158 http://dx.doi.org/10.3390/s22134660 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xiaoyan Zhou, Tanqing Dong, Quan Cheng, Zhaolin Yang, Xiyu A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine |
title | A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine |
title_full | A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine |
title_fullStr | A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine |
title_full_unstemmed | A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine |
title_short | A Virtual Combustion Sensor Based on Ion Current for Lean-Burn Natural Gas Engine |
title_sort | virtual combustion sensor based on ion current for lean-burn natural gas engine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269400/ https://www.ncbi.nlm.nih.gov/pubmed/35808158 http://dx.doi.org/10.3390/s22134660 |
work_keys_str_mv | AT wangxiaoyan avirtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT zhoutanqing avirtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT dongquan avirtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT chengzhaolin avirtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT yangxiyu avirtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT wangxiaoyan virtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT zhoutanqing virtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT dongquan virtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT chengzhaolin virtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine AT yangxiyu virtualcombustionsensorbasedonioncurrentforleanburnnaturalgasengine |