Cargando…
A Machine Learning Approach for Predicting Non-Suicidal Self-Injury in Young Adults
Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database collected by an app previously designed to record the emotional states and activities of a group of subjects exhibiting self-harm. Specifically, t...
Autores principales: | Marti-Puig, Pere, Capra, Chiara, Vega, Daniel, Llunas, Laia, Solé-Casals, Jordi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269418/ https://www.ncbi.nlm.nih.gov/pubmed/35808286 http://dx.doi.org/10.3390/s22134790 |
Ejemplares similares
-
A Fast Approach to Removing Muscle Artifacts for EEG with Signal Serialization Based Ensemble Empirical Mode Decomposition
por: Dai, Yangyang, et al.
Publicado: (2021) -
Discrete Cosine Transform for the Analysis of Essential Tremor
por: Solé-Casals, Jordi, et al.
Publicado: (2019) -
EMD-based data augmentation method applied to handwriting data for the diagnosis of Essential Tremor using LSTM networks
por: Otero, José Fernando Adrán, et al.
Publicado: (2022) -
Machine learning as the new approach to understand biomarkers of suicidal behavior
por: Paska, Alja Videtič, et al.
Publicado: (2021) -
Psychotherapeutic approaches to non-suicidal self-injury in adolescents
por: Washburn, Jason J, et al.
Publicado: (2012)