Cargando…

RNN-Based Sequence to Sequence Decoder for Run-Length Limited Codes in Visible Light Communication

Unmanned aerial vehicles (UAVs) equipped with visible light communication (VLC) technology can simultaneously offer flexible communications and illumination to service ground users. Since a poor UAV working environment increases interference sent to the VLC link, there is a pressing need to further...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Xu, Yang, Haifen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269436/
https://www.ncbi.nlm.nih.gov/pubmed/35808339
http://dx.doi.org/10.3390/s22134843
Descripción
Sumario:Unmanned aerial vehicles (UAVs) equipped with visible light communication (VLC) technology can simultaneously offer flexible communications and illumination to service ground users. Since a poor UAV working environment increases interference sent to the VLC link, there is a pressing need to further ensure reliable data communications. Run-length limited (RLL) codes are commonly utilized to ensure reliable data transmission and flicker-free perception in VLC technology. Conventional RLL decoding methods depend upon look-up tables, which can be prone to erroneous transmissions. This paper proposes a novel recurrent neural network (RNN)-based decoder for RLL codes that uses sequence to sequence (seq2seq) models. With a well-trained model, the decoder has a significant performance advantage over the look-up table method, and it can approach the bit error rate of maximum a posteriori (MAP) criterion-based decoding. Moreover, the decoder is use to deal with multiple frames simultaneously, such that the totality of RLL-coded frames can be decoded by only one-shot decoding within one time slot, which is able to enhance the system throughput. This shows our decoder’s great potential for practical UAV applications with VLC technology.