Cargando…
ROSEBUD: A Deep Fluvial Segmentation Dataset for Monocular Vision-Based River Navigation and Obstacle Avoidance
Obstacle detection for autonomous navigation through semantic image segmentation using neural networks has grown in popularity for use in unmanned ground and surface vehicles because of its ability to rapidly create a highly accurate pixel-wise classification of complex scenes. Due to the lack of av...
Autores principales: | Lambert, Reeve, Chavez-Galaviz, Jalil, Li, Jianwen, Mahmoudian, Nina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269472/ https://www.ncbi.nlm.nih.gov/pubmed/35808174 http://dx.doi.org/10.3390/s22134681 |
Ejemplares similares
-
Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller
por: Li, Jianwen, et al.
Publicado: (2023) -
Underwater Docking Approach and Homing to Enable Persistent Operation
por: Page, Brian R., et al.
Publicado: (2021) -
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
por: Lambert, Reeve, et al.
Publicado: (2021) -
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots
por: Lee, Tae-Jae, et al.
Publicado: (2016) -
River dataset as a potential fluvial transportation network for healthcare access in the Amazon region
por: Rocha, Thiago Augusto Hernandes, et al.
Publicado: (2023)