Cargando…

Triblock Copolymer Compatibilizers for Enhancing the Mechanical Properties of a Renewable Bio-Polymer

Poly(lactic acid) (PLA) is an emerging plastic that has insufficient properties (e.g., it is too brittle) for widespread commercial use. Previous research results have shown that the strength and toughness of basalt fiber reinforced PLA composites (PLA/BF) still need to be improved. To address this...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Guilian, Sun, Bohua, Han, Lu, Liu, Baichuan, Liang, Hongyu, Pu, Yongfeng, Tang, Hongming, Ma, Fangwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269499/
https://www.ncbi.nlm.nih.gov/pubmed/35808779
http://dx.doi.org/10.3390/polym14132734
Descripción
Sumario:Poly(lactic acid) (PLA) is an emerging plastic that has insufficient properties (e.g., it is too brittle) for widespread commercial use. Previous research results have shown that the strength and toughness of basalt fiber reinforced PLA composites (PLA/BF) still need to be improved. To address this limitation, this study aimed to obtain an effective compatibilizer for PLA/BF. Melt-blending of poly(butylene adipate-co-terephthalate) (PBAT) with PLA in the presence of 4,4′-methylene diphenyl diisocyanate (MDI: 0.5 wt% of the total resin) afforded PLA/PBAT-MDI triblock copolymers. The triblock copolymers were melt-blended to improve the interfacial adhesion of PLA/BF and thus obtain excellent performance of the PLA-ternary polymers. This work presents the first investigation on the effects of PLA/PBAT-MDI triblock copolymers as compatibilizers for PLA/BF blends. The resultant mechanics, the morphology, interface, crystallinity, and thermal stability of the PLA-bio polymers were comprehensively examined via standard characterization techniques. The crystallinity of the PLA-ternary polymers was as high as 43.6%, 1.44× that of PLA/BF, and 163.5% higher than that of pure PLA. The stored energy of the PLA-ternary polymers reached 20,306.2 MPa, 5.5× than that of PLA/BF, and 18.6× of pure PLA. Moreover, the fatigue life of the PLA-ternary polymers was substantially improved, 5.85× than that of PLA/PBAT-MDI triblock copolymers. Thus, the PLA/PBAT-MDI triblock copolymers are compatibilizers that improve the mechanical properties of PLA/BF.