Cargando…
Pathological-Gait Recognition Using Spatiotemporal Graph Convolutional Networks and Attention Model
Walking is an exercise that uses muscles and joints of the human body and is essential for understanding body condition. Analyzing body movements through gait has been studied and applied in human identification, sports science, and medicine. This study investigated a spatiotemporal graph convolutio...
Autores principales: | Kim, Jungi, Seo, Haneol, Naseem, Muhammad Tahir, Lee, Chan-Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269520/ https://www.ncbi.nlm.nih.gov/pubmed/35808358 http://dx.doi.org/10.3390/s22134863 |
Ejemplares similares
-
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
por: Li, Menglei, et al.
Publicado: (2022) -
Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
por: Liu, Hexiang, et al.
Publicado: (2023) -
Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization
por: Zhang, Xitong, et al.
Publicado: (2022) -
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021)