Cargando…
deepNIR: Datasets for Generating Synthetic NIR Images and Improved Fruit Detection System Using Deep Learning Techniques
This paper presents datasets utilised for synthetic near-infrared (NIR) image generation and bounding-box level fruit detection systems. A high-quality dataset is one of the essential building blocks that can lead to success in model generalisation and the deployment of data-driven deep neural netwo...
Autores principales: | Sa, Inkyu, Lim, Jong Yoon, Ahn, Ho Seok, MacDonald, Bruce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269522/ https://www.ncbi.nlm.nih.gov/pubmed/35808218 http://dx.doi.org/10.3390/s22134721 |
Ejemplares similares
-
Subsentence Extraction from Text Using Coverage-Based Deep Learning Language Models
por: Lim, JongYoon, et al.
Publicado: (2021) -
Deep learning in fNIRS: a review
por: Eastmond, Condell, et al.
Publicado: (2022) -
Organic fluorescent nanoprobes with NIR‐IIb characteristics for deep learning
por: Wanderi, Kevin, et al.
Publicado: (2022) -
Open Access Multimodal fNIRS Resting State Dataset With and Without Synthetic Hemodynamic Responses
por: von Lühmann, Alexander, et al.
Publicado: (2020) -
DeepFruits: A Fruit Detection System Using Deep Neural Networks
por: Sa, Inkyu, et al.
Publicado: (2016)