Cargando…

Integrated Spatial Modulation and STBC-VBLAST Design toward Efficient MIMO Transmission

In this contribution, the concept of spatial modulation (SM) is firstly integrated into the structure of space-time block codes (STBC)-aided vertical Bell-labs layered space-time (VBLAST) systems, in order to strike a balanced tradeoff among bit error ratio (BER), spectral efficiency and computation...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Kaiyuan, Xiao, Yue, Liu, Lizhe, Li, Yong, Song, Zhiqun, Wang, Bin, Li, Xingjian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269558/
https://www.ncbi.nlm.nih.gov/pubmed/35808216
http://dx.doi.org/10.3390/s22134719
Descripción
Sumario:In this contribution, the concept of spatial modulation (SM) is firstly integrated into the structure of space-time block codes (STBC)-aided vertical Bell-labs layered space-time (VBLAST) systems, in order to strike a balanced tradeoff among bit error ratio (BER), spectral efficiency and computational complexity. First of all, in order to enhance the BER performance of STBC-VBLAST, we advocate an effective transmit power allocation (TPA) scheme with negligible implementation costs, while dividing the STBC and VBLAST layers with alleviated interference, so as to facilitate combination with SM. Then, we further utilize the unique structure of SM for enhancing the spectral efficiency of original STBC-VBLAST, wherein the information is conveyed by not only the amplitude/phase modulation (APM) symbols but also the antenna indices. In addition, constellation sets of STBC symbols are specifically designed to be rotated to make full use of the degrees of freedom. Finally, the performance advantages of the above-mentioned structures over traditional STBC-VBLAST are demonstrated by the theoretical derivation of a closed-form expression for the union bound on the bit error probability for various spectral efficiencies, and they are supported by simulation results.