Cargando…
A Survey of Deep Learning-Based Image Restoration Methods for Enhancing Situational Awareness at Disaster Sites: The Cases of Rain, Snow and Haze
This survey article is concerned with the emergence of vision augmentation AI tools for enhancing the situational awareness of first responders (FRs) in rescue operations. More specifically, the article surveys three families of image restoration methods serving the purpose of vision augmentation un...
Autores principales: | Karavarsamis, Sotiris, Gkika, Ioanna, Gkitsas, Vasileios, Konstantoudakis, Konstantinos, Zarpalas, Dimitrios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269588/ https://www.ncbi.nlm.nih.gov/pubmed/35808203 http://dx.doi.org/10.3390/s22134707 |
Ejemplares similares
-
Arctic sea ice, Eurasia snow, and extreme winter haze in China
por: Zou, Yufei, et al.
Publicado: (2017) -
Situation aware intelligent reasoning during disaster situation in smart cities
por: Saleem, Kiran, et al.
Publicado: (2022) -
When it Rains it Pours: Real-time Situational Awareness for Two Weather Emergencies in Connecticut
por: Soto, Kristen, et al.
Publicado: (2013) -
Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia
por: Forbes, Bruce C., et al.
Publicado: (2016) -
Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere
por: Jennings, Keith S., et al.
Publicado: (2018)