Cargando…

Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient

Plant species often separate strongly along steep environmental gradients. Our objective was to study how coupling between plant physiology and environmental conditions shapes vegetation characteristics along a distinct hydrological gradient. We therefore investigated species photosynthesis in air a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sand-Jensen, Kaj, Borum, Jens, Møller, Claus Lindskov, Baastrup-Spohr, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269611/
https://www.ncbi.nlm.nih.gov/pubmed/35807635
http://dx.doi.org/10.3390/plants11131683
_version_ 1784744275000426496
author Sand-Jensen, Kaj
Borum, Jens
Møller, Claus Lindskov
Baastrup-Spohr, Lars
author_facet Sand-Jensen, Kaj
Borum, Jens
Møller, Claus Lindskov
Baastrup-Spohr, Lars
author_sort Sand-Jensen, Kaj
collection PubMed
description Plant species often separate strongly along steep environmental gradients. Our objective was to study how coupling between plant physiology and environmental conditions shapes vegetation characteristics along a distinct hydrological gradient. We therefore investigated species photosynthesis in air and under water within a limited area from dry-as-dust to complete submergence in a nutrient-poor limestone habitat on Öland’s Alvar, Sweden. We found structural and physiological adaptations of species to endure water limitation at the dry end (e.g., moss cushions and CAM-metabolism) and diffusive carbon limitation (e.g., bicarbonate use) at the submerged end of the gradient. As anticipated, mean photosynthesis in air increased 18-fold from the species-poor assembly of cushion-mosses and Sedum CAM-species on mm-thin limestone pavements to the species-rich assembly of C-3 terrestrial plants in deeper and wetter soils. A GLM-model indicated that 90% of the variation in species richness could be explained by a positive effect of soil depth, a negative effect of the duration of water cover and their interaction. In water, mean photosynthesis was highest among aquatic species, low among Sedum species and cushion mosses, and negligible among C-3 terrestrial plants. While aquatic species dried out in air, drought-resistant small species were probably competitively excluded from the more suitable terrestrial habitats on deeper soils with moderate flooding by taller species of high photosynthetic capability. In conclusion, the clear distribution of species along the steep hydrological gradient reflects distinct structural and physiological adaptations, environmental filtering and interspecific competition.
format Online
Article
Text
id pubmed-9269611
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92696112022-07-09 Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient Sand-Jensen, Kaj Borum, Jens Møller, Claus Lindskov Baastrup-Spohr, Lars Plants (Basel) Article Plant species often separate strongly along steep environmental gradients. Our objective was to study how coupling between plant physiology and environmental conditions shapes vegetation characteristics along a distinct hydrological gradient. We therefore investigated species photosynthesis in air and under water within a limited area from dry-as-dust to complete submergence in a nutrient-poor limestone habitat on Öland’s Alvar, Sweden. We found structural and physiological adaptations of species to endure water limitation at the dry end (e.g., moss cushions and CAM-metabolism) and diffusive carbon limitation (e.g., bicarbonate use) at the submerged end of the gradient. As anticipated, mean photosynthesis in air increased 18-fold from the species-poor assembly of cushion-mosses and Sedum CAM-species on mm-thin limestone pavements to the species-rich assembly of C-3 terrestrial plants in deeper and wetter soils. A GLM-model indicated that 90% of the variation in species richness could be explained by a positive effect of soil depth, a negative effect of the duration of water cover and their interaction. In water, mean photosynthesis was highest among aquatic species, low among Sedum species and cushion mosses, and negligible among C-3 terrestrial plants. While aquatic species dried out in air, drought-resistant small species were probably competitively excluded from the more suitable terrestrial habitats on deeper soils with moderate flooding by taller species of high photosynthetic capability. In conclusion, the clear distribution of species along the steep hydrological gradient reflects distinct structural and physiological adaptations, environmental filtering and interspecific competition. MDPI 2022-06-24 /pmc/articles/PMC9269611/ /pubmed/35807635 http://dx.doi.org/10.3390/plants11131683 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sand-Jensen, Kaj
Borum, Jens
Møller, Claus Lindskov
Baastrup-Spohr, Lars
Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient
title Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient
title_full Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient
title_fullStr Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient
title_full_unstemmed Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient
title_short Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient
title_sort physiological adaptation and plant distribution along a steep hydrological gradient
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269611/
https://www.ncbi.nlm.nih.gov/pubmed/35807635
http://dx.doi.org/10.3390/plants11131683
work_keys_str_mv AT sandjensenkaj physiologicaladaptationandplantdistributionalongasteephydrologicalgradient
AT borumjens physiologicaladaptationandplantdistributionalongasteephydrologicalgradient
AT møllerclauslindskov physiologicaladaptationandplantdistributionalongasteephydrologicalgradient
AT baastrupspohrlars physiologicaladaptationandplantdistributionalongasteephydrologicalgradient