Cargando…
Efficient Feature Learning Approach for Raw Industrial Vibration Data Using Two-Stage Learning Framework
In the last decades, data-driven methods have gained great popularity in the industry, supported by state-of-the-art advancements in machine learning. These methods require a large quantity of labeled data, which is difficult to obtain and mostly costly and challenging. To address these challenges,...
Autores principales: | Tnani, Mohamed-Ali, Subarnaduti, Paul, Diepold, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269670/ https://www.ncbi.nlm.nih.gov/pubmed/35808315 http://dx.doi.org/10.3390/s22134813 |
Ejemplares similares
-
Autonomous Assessment of Delamination Using Scarce Raw Structural Vibration and Transfer Learning
por: Khan, Asif, et al.
Publicado: (2021) -
Deep Learning Approach for Vibration Signals Applications
por: Chen, Han-Yun, et al.
Publicado: (2021) -
A machine learning workflow for raw food spectroscopic classification in a future industry
por: Tsakanikas, Panagiotis, et al.
Publicado: (2020) -
Rules and mechanisms for efficient two-stage learning in neural circuits
por: Teşileanu, Tiberiu, et al.
Publicado: (2017) -
An efficient machine learning framework to identify important clinical features associated with pulmonary embolism
por: Zou, Baiming, et al.
Publicado: (2023)