Cargando…
Sliding-Window Normalization to Improve the Performance of Machine-Learning Models for Real-Time Motion Prediction Using Electromyography
Many researchers have used machine learning models to control artificial hands, walking aids, assistance suits, etc., using the biological signal of electromyography (EMG). The use of such devices requires high classification accuracy. One method for improving the classification performance of machi...
Autores principales: | Tanaka, Taichi, Nambu, Isao, Maruyama, Yoshiko, Wada, Yasuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269700/ https://www.ncbi.nlm.nih.gov/pubmed/35808500 http://dx.doi.org/10.3390/s22135005 |
Ejemplares similares
-
Electromyography Study of Forward-stepping Motion
por: Soda, Naoki, et al.
Publicado: (2013) -
Forward Inverse Relaxation Model Incorporating Movement Duration Optimization
por: Takeda, Misaki, et al.
Publicado: (2021) -
Real-Time Stress Assessment Using Sliding Window Based Convolutional Neural Network
por: Naqvi, Syed Faraz, et al.
Publicado: (2020) -
Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors
por: Wang, Gaojing, et al.
Publicado: (2018) -
Sliding window algorithm for mobile communication networks
por: Mallikharjuna Rao, Nuka, et al.
Publicado: (2018)