Cargando…
Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test
Nowadays, the better assessment of low back pain (LBP) is an important challenge, as it is the leading musculoskeletal condition worldwide in terms of years of disability. The objective of this study was to evaluate the relevance of various machine learning (ML) algorithms and Sample Entropy (SampEn...
Autores principales: | Thiry, Paul, Houry, Martin, Philippe, Laurent, Nocent, Olivier, Buisseret, Fabien, Dierick, Frédéric, Slama, Rim, Bertucci, William, Thévenon, André, Simoneau-Buessinger, Emilie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269703/ https://www.ncbi.nlm.nih.gov/pubmed/35808522 http://dx.doi.org/10.3390/s22135027 |
Ejemplares similares
-
Sample Entropy as a Tool to Assess Lumbo-Pelvic Movements in a Clinical Test for Low-Back-Pain Patients
por: Thiry, Paul, et al.
Publicado: (2022) -
Head Pitch Angular Velocity Discriminates (Sub-)Acute Neck Pain Patients and Controls Assessed with the DidRen Laser Test
por: Hage, Renaud, et al.
Publicado: (2022) -
Low-Cost Sensors and Biological Signals
por: Dierick, Frédéric, et al.
Publicado: (2021) -
Wearable Sensors Applied in Movement Analysis
por: Buisseret, Fabien, et al.
Publicado: (2022) -
Perceived Usefulness of Telerehabilitation of Musculoskeletal Disorders: A Belgium–France Pilot Study during Second Wave of COVID-19 Pandemic
por: Dierick, Frédéric, et al.
Publicado: (2021)