Cargando…

A Novel Sparsity Adaptive Algorithm for Underwater Acoustic Signal Reconstruction

In view of the fact that most of the traditional algorithms for reconstructing underwater acoustic signals from low-dimensional compressed data are based on known sparsity, a sparsity adaptive and variable step-size matching pursuit (SAVSMP) algorithm is proposed. Firstly, the algorithm uses Restric...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Na, Yin, Xinghui, Li, Haitao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269725/
https://www.ncbi.nlm.nih.gov/pubmed/35808513
http://dx.doi.org/10.3390/s22135018
Descripción
Sumario:In view of the fact that most of the traditional algorithms for reconstructing underwater acoustic signals from low-dimensional compressed data are based on known sparsity, a sparsity adaptive and variable step-size matching pursuit (SAVSMP) algorithm is proposed. Firstly, the algorithm uses Restricted Isometry Property (RIP) criterion to estimate the initial value of sparsity, and then employs curve fitting method to adjust the initial value of sparsity to avoid underestimation or overestimation, before finally realizing the close approach of the sparsity level with the adaptive step size. The algorithm selects the atoms by matching test, and uses the Least Squares Method to filter out the unsuitable atoms, so as to realize the precise reconstruction of underwater acoustic signal received by the sonar system. The experimental comparison reveals that the proposed algorithm overcomes the drawbacks of existing algorithms, in terms of high computation time and low reconstruction quality.