Cargando…
Generation of Individualized Synthetic Data for Augmentation of the Type 1 Diabetes Data Sets Using Deep Learning Models
In this paper, we present a methodology based on generative adversarial network architecture to generate synthetic data sets with the intention of augmenting continuous glucose monitor data from individual patients. We use these synthetic data with the aim of improving the overall performance of pre...
Autores principales: | Noguer, Josep, Contreras, Ivan, Mujahid, Omer, Beneyto, Aleix, Vehi, Josep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269743/ https://www.ncbi.nlm.nih.gov/pubmed/35808449 http://dx.doi.org/10.3390/s22134944 |
Ejemplares similares
-
Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges
por: Mujahid, Omer, et al.
Publicado: (2021) -
Dynamic Rule-Based Algorithm to Tune Insulin-on-Board Constraints for a Hybrid Artificial Pancreas System
por: Bertachi, Arthur, et al.
Publicado: (2020) -
A Machine Learning Approach to Minimize Nocturnal Hypoglycemic Events in Type 1 Diabetic Patients under Multiple Doses of Insulin
por: Parcerisas, Adrià, et al.
Publicado: (2022) -
A Hybrid Automata Approach for Monitoring the Patient in the Loop in Artificial Pancreas Systems
por: Beneyto, Aleix, et al.
Publicado: (2021) -
Artificial Intelligence for Diabetes Management and Decision Support: Literature Review
por: Contreras, Ivan, et al.
Publicado: (2018)