Cargando…

Authenticated Semi-Quantum Key Distribution Protocol Based on W States

In 2019, Wen et al. proposed authenticated semi-quantum key distribution (ASQKD) for identity and message using the teleportation of W states and GHZ-like states without pre-shared keys. However, the ASQKD protocol presents a vital issue in the teleportation of W states owing to its inappropriate de...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hung-Wen, Tsai, Chia-Wei, Lin, Jason, Yang, Chun-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269753/
https://www.ncbi.nlm.nih.gov/pubmed/35808492
http://dx.doi.org/10.3390/s22134998
Descripción
Sumario:In 2019, Wen et al. proposed authenticated semi-quantum key distribution (ASQKD) for identity and message using the teleportation of W states and GHZ-like states without pre-shared keys. However, the ASQKD protocol presents a vital issue in the teleportation of W states owing to its inappropriate design. Bob recovers the teleported W states without obtaining the position of the corresponding photons and then returns the recovered photons back to Alice. Hence, the teleportation of W states in Wen et al.’s ASQKD protocol was malfunctioning. Moreover, Wen et al.’s ASQKD protocol requires quantum memory, which strongly disobeys the definition of semi-quantum proposed by Boyer et al. Therefore, in this study, we discover the flaws of Wen et al.’s ASQKD protocol and propose an authenticated semi-quantum key distribution protocol. When compared to Wen et al.’s ASQKD protocol, the proposed ASQKD protocol has the following advantages: legal semi-quantum environment (i.e., does not require quantum memory), reduced quantum hardware requirement (i.e., based only on W states), does not involve classical cryptography (i.e., the hash function), and provided 1.6 times higher qubit efficiency.