Cargando…
NRT-YOLO: Improved YOLOv5 Based on Nested Residual Transformer for Tiny Remote Sensing Object Detection
To address the problems of tiny objects and high resolution of object detection in remote sensing imagery, the methods with coarse-grained image cropping have been widely studied. However, these methods are always inefficient and complex due to the two-stage architecture and the huge computation for...
Autores principales: | Liu, Yukuan, He, Guanglin, Wang, Zehu, Li, Weizhe, Huang, Hongfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269754/ https://www.ncbi.nlm.nih.gov/pubmed/35808445 http://dx.doi.org/10.3390/s22134953 |
Ejemplares similares
-
RSI-YOLO: Object Detection Method for Remote Sensing Images Based on Improved YOLO
por: Li, Zhuang, et al.
Publicado: (2023) -
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
por: Kulyukin, Vladimir A., et al.
Publicado: (2023) -
Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images
por: Cao, Xuan, et al.
Publicado: (2023) -
MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface
por: Guo, Zexuan, et al.
Publicado: (2022) -
Platelet Detection Based on Improved YOLO_v3
por: Liu, Renting, et al.
Publicado: (2022)