Cargando…
A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions
Diagnostics of mechanical problems in manufacturing systems are essential to maintaining safety and minimizing expenditures. In this study, an intelligent fault classification model that combines a signal-to-image encoding technique and a convolution neural network (CNN) with the motor-current signa...
Autores principales: | Toma, Rafia Nishat, Piltan, Farzin, Im, Kichang, Shon, Dongkoo, Yoon, Tae Hyun, Yoo, Dae-Seung, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269757/ https://www.ncbi.nlm.nih.gov/pubmed/35808372 http://dx.doi.org/10.3390/s22134881 |
Ejemplares similares
-
Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
por: Toma, Rafia Nishat, et al.
Publicado: (2022) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification
por: Piltan, Farzin, et al.
Publicado: (2022) -
A Reliable Health Indicator for Fault Prognosis of Bearings
por: Duong, Bach Phi, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
por: Piltan, Farzin, et al.
Publicado: (2023)