Cargando…
CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation
Accurate segmentation of nasopharyngeal carcinoma is essential to its treatment effect. However, there are several challenges in existing deep learning-based segmentation methods. First, the acquisition of labeled data are challenging. Second, the nasopharyngeal carcinoma is similar to the surroundi...
Autores principales: | Chen, Yitong, Han, Guanghui, Lin, Tianyu, Liu, Xiujian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269783/ https://www.ncbi.nlm.nih.gov/pubmed/35808548 http://dx.doi.org/10.3390/s22135053 |
Ejemplares similares
-
Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images
por: Liu, Yi, et al.
Publicado: (2022) -
AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution
por: Zhang, Jiajing, et al.
Publicado: (2022) -
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
por: Li, Yang, et al.
Publicado: (2021) -
Semi-Supervised Instance-Segmentation Model for Feature Transfer Based on Category Attention
por: Wang, Hao, et al.
Publicado: (2022) -
Semi-supervised nuclei segmentation based on multi-edge features fusion attention network
por: Li, Huachang, et al.
Publicado: (2023)