Cargando…
An Automatic System for Continuous Pain Intensity Monitoring Based on Analyzing Data from Uni-, Bi-, and Multi-Modality
Pain is a reliable indicator of health issues; it affects patients’ quality of life when not well managed. The current methods in the clinical application undergo biases and errors; moreover, such methods do not facilitate continuous pain monitoring. For this purpose, the recent methodologies in aut...
Autores principales: | Othman, Ehsan, Werner, Philipp, Saxen, Frerk, Fiedler, Marc-André, Al-Hamadi, Ayoub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269799/ https://www.ncbi.nlm.nih.gov/pubmed/35808487 http://dx.doi.org/10.3390/s22134992 |
Ejemplares similares
-
Automated Electrodermal Activity and Facial Expression Analysis for Continuous Pain Intensity Monitoring on the X-ITE Pain Database
por: Othman, Ehsan, et al.
Publicado: (2023) -
Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database
por: Othman, Ehsan, et al.
Publicado: (2021) -
Predicting Group Contribution Behaviour in a Public Goods Game from Face-to-Face Communication
por: Othman, Ehsan, et al.
Publicado: (2019) -
UniRule: a unified rule resource for automatic annotation in the UniProt Knowledgebase
por: MacDougall, Alistair, et al.
Publicado: (2020) -
UniRule: a unified rule resource for automatic annotation in the UniProt Knowledgebase
por: MacDougall, Alistair, et al.
Publicado: (2021)