Cargando…
Enhancing Targeted Minority Class Prediction in Sentence-Level Relation Extraction
Sentence-level relation extraction (RE) has a highly imbalanced data distribution that about 80% of data are labeled as negative, i.e., no relation; and there exist minority classes (MC) among positive labels; furthermore, some of MC instances have an incorrect label. Due to those challenges, i.e.,...
Autores principales: | Baek, Hyeong-Ryeol, Choi, Yong-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269806/ https://www.ncbi.nlm.nih.gov/pubmed/35808404 http://dx.doi.org/10.3390/s22134911 |
Ejemplares similares
-
Exploiting document graphs for inter sentence relation extraction
por: Le, Hoang-Quynh, et al.
Publicado: (2022) -
Parafoveal Processing in Chinese Sentence Reading: Early Extraction of Radical Level Phonology
por: Luo, Jiefei, et al.
Publicado: (2018) -
Improving extractive document summarization with sentence centrality
por: Gong, Shuai, et al.
Publicado: (2022) -
Enhanced balancing GAN: minority-class image generation
por: Huang, Gaofeng, et al.
Publicado: (2021) -
Improving Document-Level Sentiment Classification Using Importance of Sentences
por: Choi, Gihyeon, et al.
Publicado: (2020)