Cargando…
Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream
The information about optical flow, i.e., the movement of pixels between two consecutive images from a video sequence, is used in many vision systems, both classical and those based on deep neural networks. In some robotic applications, e.g., in autonomous vehicles, it is necessary to calculate the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269814/ https://www.ncbi.nlm.nih.gov/pubmed/35808512 http://dx.doi.org/10.3390/s22135017 |
_version_ | 1784744314057785344 |
---|---|
author | Blachut, Krzysztof Kryjak, Tomasz |
author_facet | Blachut, Krzysztof Kryjak, Tomasz |
author_sort | Blachut, Krzysztof |
collection | PubMed |
description | The information about optical flow, i.e., the movement of pixels between two consecutive images from a video sequence, is used in many vision systems, both classical and those based on deep neural networks. In some robotic applications, e.g., in autonomous vehicles, it is necessary to calculate the flow in real time. This represents a challenging task, especially for high-resolution video streams. In this work, two gradient-based algorithms—Lucas–Kanade and Horn–Schunck—were implemented on a ZCU 104 platform with Xilinx Zynq UltraScale+ MPSoC FPGA. A vector data format was used to enable flow calculation for a 4K (Ultra HD, 3840 × 2160 pixels) video stream at 60 fps. In order to detect larger pixel displacements, a multi-scale approach was used in both algorithms. Depending on the scale, the calculations were performed for different data formats, allowing for more efficient processing by reducing resource utilisation. The presented solution allows real-time optical flow determination in multiple scales for a 4K resolution with estimated energy consumption below 6 W. The algorithms realised in this work can be a component of a larger vision system in advanced surveillance systems or autonomous vehicles. |
format | Online Article Text |
id | pubmed-9269814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92698142022-07-09 Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream Blachut, Krzysztof Kryjak, Tomasz Sensors (Basel) Article The information about optical flow, i.e., the movement of pixels between two consecutive images from a video sequence, is used in many vision systems, both classical and those based on deep neural networks. In some robotic applications, e.g., in autonomous vehicles, it is necessary to calculate the flow in real time. This represents a challenging task, especially for high-resolution video streams. In this work, two gradient-based algorithms—Lucas–Kanade and Horn–Schunck—were implemented on a ZCU 104 platform with Xilinx Zynq UltraScale+ MPSoC FPGA. A vector data format was used to enable flow calculation for a 4K (Ultra HD, 3840 × 2160 pixels) video stream at 60 fps. In order to detect larger pixel displacements, a multi-scale approach was used in both algorithms. Depending on the scale, the calculations were performed for different data formats, allowing for more efficient processing by reducing resource utilisation. The presented solution allows real-time optical flow determination in multiple scales for a 4K resolution with estimated energy consumption below 6 W. The algorithms realised in this work can be a component of a larger vision system in advanced surveillance systems or autonomous vehicles. MDPI 2022-07-03 /pmc/articles/PMC9269814/ /pubmed/35808512 http://dx.doi.org/10.3390/s22135017 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Blachut, Krzysztof Kryjak, Tomasz Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream |
title | Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream |
title_full | Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream |
title_fullStr | Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream |
title_full_unstemmed | Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream |
title_short | Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical Flow Algorithms for a 4K Video Stream |
title_sort | real-time efficient fpga implementation of the multi-scale lucas-kanade and horn-schunck optical flow algorithms for a 4k video stream |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269814/ https://www.ncbi.nlm.nih.gov/pubmed/35808512 http://dx.doi.org/10.3390/s22135017 |
work_keys_str_mv | AT blachutkrzysztof realtimeefficientfpgaimplementationofthemultiscalelucaskanadeandhornschunckopticalflowalgorithmsfora4kvideostream AT kryjaktomasz realtimeefficientfpgaimplementationofthemultiscalelucaskanadeandhornschunckopticalflowalgorithmsfora4kvideostream |