Cargando…
Human Pulse Detection by a Soft Tactile Actuator
Soft sensing technologies offer promising prospects in the fields of soft robots, wearable devices, and biomedical instruments. However, the structural design, fabrication process, and sensing algorithm design of the soft devices confront great difficulties. In this paper, a soft tactile actuator (S...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269831/ https://www.ncbi.nlm.nih.gov/pubmed/35808542 http://dx.doi.org/10.3390/s22135047 |
Sumario: | Soft sensing technologies offer promising prospects in the fields of soft robots, wearable devices, and biomedical instruments. However, the structural design, fabrication process, and sensing algorithm design of the soft devices confront great difficulties. In this paper, a soft tactile actuator (STA) with both the actuation function and sensing function is presented. The tactile physiotherapy finger of the STA was fabricated by a fluid silica gel material. Before pulse detection, the tactile physiotherapy finger was actuated to the detection position by injecting compressed air into its chamber. The pulse detecting algorithm, which realized the pulse detection function of the STA, is presented. Finally, in actual pulse detection experiments, the pulse values of the volunteers detected by using the STA and by employing a professional pulse meter were close, which illustrates the effectiveness of the pulse detecting algorithm of the STA. |
---|