Cargando…

Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv5

COVID-19 is highly contagious, and proper wearing of a mask can hinder the spread of the virus. However, complex factors in natural scenes, including occlusion, dense, and small-scale targets, frequently lead to target misdetection and missed detection. To address these issues, this paper proposes a...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Shuyi, Li, Lulu, Guo, Tianyou, Cao, Yunyu, Li, Yinlei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269836/
https://www.ncbi.nlm.nih.gov/pubmed/35808418
http://dx.doi.org/10.3390/s22134933
Descripción
Sumario:COVID-19 is highly contagious, and proper wearing of a mask can hinder the spread of the virus. However, complex factors in natural scenes, including occlusion, dense, and small-scale targets, frequently lead to target misdetection and missed detection. To address these issues, this paper proposes a YOLOv5-based mask-wearing detection algorithm, YOLOv5-CBD. Firstly, the Coordinate Attention mechanism is introduced into the feature fusion process to stress critical features and decrease the impact of redundant features after feature fusion. Then, the original feature pyramid network module in the feature fusion module was replaced with a weighted bidirectional feature pyramid network to achieve efficient bidirectional cross-scale connectivity and weighted feature fusion. Finally, we combined Distance Intersection over Union with Non-Maximum Suppression to improve the missed detection of overlapping targets. Experiments show that the average detection accuracy of the YOLOv5-CBD model is 96.7%—an improvement of 2.1% compared to the baseline model (YOLOv5).