Cargando…
Selection of the Best Set of Features for sEMG-Based Hand Gesture Recognition Applying a CNN Architecture
The classification of surface myoelectric signals (sEMG) remains a great challenge when focused on its implementation in an electromechanical hand prosthesis, due to its nonlinear and stochastic nature, as well as the great difference between models applied offline and online. In this work, the sele...
Autores principales: | Sandoval-Espino, Jorge Arturo, Zamudio-Lara, Alvaro, Marbán-Salgado, José Antonio, Escobedo-Alatorre, J. Jesús, Palillero-Sandoval, Omar, Velásquez-Aguilar, J. Guadalupe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269838/ https://www.ncbi.nlm.nih.gov/pubmed/35808467 http://dx.doi.org/10.3390/s22134972 |
Ejemplares similares
-
A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition
por: Hu, Yu, et al.
Publicado: (2018) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019) -
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
por: Bai, Dianchun, et al.
Publicado: (2021) -
A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition
por: Xu, Pufan, et al.
Publicado: (2022) -
Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures
por: Ozdemir, Mehmet Akif, et al.
Publicado: (2022)