Cargando…
Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels
Unlimited access to information and data sharing wherever and at any time for anyone and anything is a fundamental component of fifth-generation (5G) wireless communication and beyond. Therefore, it has become inevitable to exploit the super-high frequency (SHF) and millimeter-wave (mmWave) frequenc...
Autores principales: | Elmezughi, Mohamed K., Salih, Omran, Afullo, Thomas J., Duffy, Kevin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269839/ https://www.ncbi.nlm.nih.gov/pubmed/35808457 http://dx.doi.org/10.3390/s22134967 |
Ejemplares similares
-
Path loss modeling based on neural networks and ensemble method for future wireless networks
por: Elmezughi, Mohamed K., et al.
Publicado: (2023) -
Path Loss Measurements and Model Analysis in an Indoor Corridor Environment at 28 GHz and 38 GHz
por: Oladimeji, Tolulope T., et al.
Publicado: (2022) -
Performance analysis of improved path loss models for millimeter-wave wireless network channels at 28 GHz and 38 GHz
por: Oladimeji, Tolulope T., et al.
Publicado: (2023) -
Geodesic Path Model for Indoor Propagation Loss Prediction of Narrowband Channels
por: Kaya , Abdil, et al.
Publicado: (2022) -
Propagation path loss prediction modelling in enclosed environments for 5G networks: A review
por: Oladimeji, Tolulope T., et al.
Publicado: (2022)