Cargando…
Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain
Pollen grains strongly affect human health by inducing allergies. Although the monitoring of airborne pollens particles is of major importance, the current measurement methods are manually conducted and are expensive, limiting the number of monitoring stations. Thus, there is a need for relatively l...
Autores principales: | Renard, Jean-Baptiste, El Azari, Houssam, Richard, Jérôme, Lauthier, Johann, Surcin, Jérémy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269840/ https://www.ncbi.nlm.nih.gov/pubmed/35808483 http://dx.doi.org/10.3390/s22134984 |
Ejemplares similares
-
A Laboratory Evaluation of the New Automated Pollen Sensor Beenose: Pollen Discrimination Using Machine Learning Techniques
por: El Azari, Houssam, et al.
Publicado: (2023) -
Spatial Distribution of PM(2.5) Mass and Number Concentrations in Paris (France) from the Pollutrack Network of Mobile Sensors during 2018–2022
por: Renard, Jean-Baptiste, et al.
Publicado: (2023) -
Relation between PM2.5 pollution and Covid-19 mortality in Western Europe for the 2020–2022 period
por: Renard, Jean-Baptiste, et al.
Publicado: (2022) -
Real-time automatic detection of starch particles in ambient air
por: Šikoparija, Branko, et al.
Publicado: (2022) -
Development and Testing of the A1 Volumetric Air Sampler, an Automatic Pollen Trap Suitable for Long-Term Monitoring of eDNA Pollen Diversity
por: Khan, Gulzar, et al.
Publicado: (2022)