Cargando…
An Improved Mixture Density Network for 3D Human Pose Estimation with Ordinal Ranking
Estimating accurate 3D human poses from 2D images remains a challenge due to the lack of explicit depth information in 2D data. This paper proposes an improved mixture density network for 3D human pose estimation called the Locally Connected Mixture Density Network (LCMDN). Instead of conducting dir...
Autores principales: | Wu, Yiqi, Ma, Shichao, Zhang, Dejun, Huang, Weilun, Chen, Yilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269848/ https://www.ncbi.nlm.nih.gov/pubmed/35808480 http://dx.doi.org/10.3390/s22134987 |
Ejemplares similares
-
MagicCubePose, A more comprehensive 6D pose estimation network
por: Li, Fudong, et al.
Publicado: (2023) -
Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation
por: Heczko, Dominik, et al.
Publicado: (2022) -
The impact of ordinal scales on Gaussian mixture recovery
por: Haslbeck, Jonas M. B., et al.
Publicado: (2022) -
Open Binding Pose Metadynamics: An Effective Approach
for the Ranking of Protein–Ligand Binding Poses
por: Lukauskis, Dominykas, et al.
Publicado: (2022) -
Pose ResNet: 3D Human Pose Estimation Based on Self-Supervision
por: Bao, Wenxia, et al.
Publicado: (2023)