Cargando…
Characterizing superspreading potential of infectious disease: Decomposition of individual transmissibility
In the context of infectious disease transmission, high heterogeneity in individual infectiousness indicates that a few index cases can generate large numbers of secondary cases, a phenomenon commonly known as superspreading. The potential of disease superspreading can be characterized by describing...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269899/ https://www.ncbi.nlm.nih.gov/pubmed/35759509 http://dx.doi.org/10.1371/journal.pcbi.1010281 |
Sumario: | In the context of infectious disease transmission, high heterogeneity in individual infectiousness indicates that a few index cases can generate large numbers of secondary cases, a phenomenon commonly known as superspreading. The potential of disease superspreading can be characterized by describing the distribution of secondary cases (of each seed case) as a negative binomial (NB) distribution with the dispersion parameter, k. Based on the feature of NB distribution, there must be a proportion of individuals with individual reproduction number of almost 0, which appears restricted and unrealistic. To overcome this limitation, we generalized the compound structure of a Poisson rate and included an additional parameter, and divided the reproduction number into independent and additive fixed and variable components. Then, the secondary cases followed a Delaporte distribution. We demonstrated that the Delaporte distribution was important for understanding the characteristics of disease transmission, which generated new insights distinct from the NB model. By using real-world dataset, the Delaporte distribution provides improvements in describing the distributions of COVID-19 and SARS cases compared to the NB distribution. The model selection yielded increasing statistical power with larger sample sizes as well as conservative type I error in detecting the improvement in fitting with the likelihood ratio (LR) test. Numerical simulation revealed that the control strategy-making process may benefit from monitoring the transmission characteristics under the Delaporte framework. Our findings highlighted that for the COVID-19 pandemic, population-wide interventions may control disease transmission on a general scale before recommending the high-risk-specific control strategies. |
---|