Cargando…
Simulation of English Speech Recognition Based on Improved Extreme Random Forest Classification
Existing speech recognition systems are only for mainstream audio types; there is little research on language types; the system is subject to relatively large restrictions; and the recognition rate is not high. Therefore, how to use an efficient classifier to make a speech recognition system with a...
Autores principales: | Hao, Chunhui, Li, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270152/ https://www.ncbi.nlm.nih.gov/pubmed/35814545 http://dx.doi.org/10.1155/2022/1948159 |
Ejemplares similares
-
Speech recognition with hearing aids for 10 standard audiograms: English version
por: Dörfler, C., et al.
Publicado: (2020) -
Improving protein fold recognition by random forest
por: Jo, Taeho, et al.
Publicado: (2014) -
English Speech Recognition System Model Based on Computer-Aided Function and Neural Network Algorithm
por: Zhang, Jin
Publicado: (2022) -
Weighted Random Forests to Improve Arrhythmia Classification
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Effect of Speech-Shaped Noise on the Recognition of Malayalam and English Consonants by Malayalam Listeners
por: Kalaiah, Mohan K., et al.
Publicado: (2019)