Cargando…
Deep convolutional neural network-based skeletal classification of cephalometric image compared with automated-tracing software
This study aimed to investigate deep convolutional neural network- (DCNN-) based artificial intelligence (AI) model using cephalometric images for the classification of sagittal skeletal relationships and compare the performance of the newly developed DCNN-based AI model with that of the automated-t...
Autores principales: | Kim, Ho-Jin, Kim, Kyoung Dong, Kim, Do-Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270345/ https://www.ncbi.nlm.nih.gov/pubmed/35804075 http://dx.doi.org/10.1038/s41598-022-15856-6 |
Ejemplares similares
-
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
por: Lee, Jeong-Hoon, et al.
Publicado: (2020) -
Comparing intra-observer variation and external variations of a fully automated cephalometric analysis with a cascade convolutional neural net
por: Kim, In-Hwan, et al.
Publicado: (2021) -
Sex determination from lateral cephalometric radiographs using an automated deep learning convolutional neural network
por: Khazaei, Maryam, et al.
Publicado: (2022) -
Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis
por: Tsolakis, Ioannis A., et al.
Publicado: (2022) -
Deep-Learning-Based Detection of Cranio-Spinal Differences between Skeletal Classification Using Cephalometric Radiography
por: Jeong, Seung Hyun, et al.
Publicado: (2021)