Cargando…
EEG Dataset for RSVP and P300 Speller Brain-Computer Interfaces
As attention to deep learning techniques has grown, many researchers have attempted to develop ready-to-go brain-computer interfaces (BCIs) that include automatic processing pipelines. However, to do so, a large and clear dataset is essential to increase the model’s reliability and performance. Acco...
Autores principales: | Won, Kyungho, Kwon, Moonyoung, Ahn, Minkyu, Jun, Sung Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270361/ https://www.ncbi.nlm.nih.gov/pubmed/35803976 http://dx.doi.org/10.1038/s41597-022-01509-w |
Ejemplares similares
-
P300 Speller Performance Predictor Based on RSVP Multi-feature
por: Won, Kyungho, et al.
Publicado: (2019) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
A novel P300 BCI speller based on the Triple RSVP paradigm
por: Lin, Zhimin, et al.
Publicado: (2018) -
A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface
por: Ma, Jun, et al.
Publicado: (2022) -
Open multi-session and multi-task EEG cognitive Dataset for passive brain-computer Interface Applications
por: Hinss, Marcel F., et al.
Publicado: (2023)