Cargando…
A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys
We demonstrate the capabilities of two model-agnostic local post-hoc model interpretability methods, namely breakDown (BD) and shapley (SHAP), to explain the predictions of a black-box classification learning model that establishes a quantitative relationship between chemical composition and multi-p...
Autores principales: | Lee, Kyungtae, Ayyasamy, Mukil V., Ji, Yangfeng, Balachandran, Prasanna V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270422/ https://www.ncbi.nlm.nih.gov/pubmed/35804179 http://dx.doi.org/10.1038/s41598-022-15618-4 |
Ejemplares similares
-
Accelerated exploration of multi-principal element alloys with solid solution phases
por: Senkov, O.N., et al.
Publicado: (2015) -
Expanded dataset of mechanical properties and observed phases of multi-principal element alloys
por: Borg, Christopher K. H., et al.
Publicado: (2020) -
Origin of radiation resistance in multi-principal element alloys
por: Do, Hyeon-Seok, et al.
Publicado: (2018) -
Maximum strength and dislocation patterning in multi–principal element alloys
por: Cao, Penghui
Publicado: (2022) -
Ultrahigh-temperature melt printing of multi-principal element alloys
por: Wang, Xizheng, et al.
Publicado: (2022)