Cargando…
Temporal quality degradation in AI models
As AI models continue to advance into many real-life applications, their ability to maintain reliable quality over time becomes increasingly important. The principal challenge in this task stems from the very nature of current machine learning models, dependent on the data as it was at the time of t...
Autores principales: | Vela, Daniel, Sharp, Andrew, Zhang, Richard, Nguyen, Trang, Hoang, An, Pianykh, Oleg S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270447/ https://www.ncbi.nlm.nih.gov/pubmed/35803963 http://dx.doi.org/10.1038/s41598-022-15245-z |
Ejemplares similares
-
Human knowledge models: Learning applied knowledge from the data
por: Dudyrev, Egor, et al.
Publicado: (2022) -
An alternative to the black box: Strategy learning
por: Taub, Simon, et al.
Publicado: (2022) -
Modeling workflows: Identifying the most predictive features in healthcare operational processes
por: Crowley, Colm, et al.
Publicado: (2020) -
Correction: An alternative to the black box: Strategy learning
por: Traub, Simon, et al.
Publicado: (2022) -
COVID-19: Recovery Models for Radiology Departments
por: Guitron, Steven, et al.
Publicado: (2020)