Cargando…
Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning–Based Exploratory Study
BACKGROUND: Depression levels in adolescents have trended upward over the past several years. According to a 2020 survey by the National Survey on Drug Use and Health, 4.1 million US adolescents have experienced at least one major depressive episode. This number constitutes approximately 16% of adol...
Autores principales: | Mullick, Tahsin, Radovic, Ana, Shaaban, Sam, Doryab, Afsaneh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270714/ https://www.ncbi.nlm.nih.gov/pubmed/35749157 http://dx.doi.org/10.2196/35807 |
Ejemplares similares
-
Wearable multimodal sensors for the detection of behavioral and psychological symptoms of dementia using personalized machine learning models
por: Iaboni, Andrea, et al.
Publicado: (2022) -
Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors
por: Pedrelli, Paola, et al.
Publicado: (2020) -
Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning
por: Tazawa, Yuuki, et al.
Publicado: (2020) -
Personalized machine learning of depressed mood using wearables
por: Shah, Rutvik V., et al.
Publicado: (2021) -
A Novel Elderly Tracking System Using Machine Learning to Classify Signals from Mobile and Wearable Sensors
por: Muangprathub, Jirapond, et al.
Publicado: (2021)