Cargando…

Functional regeneration of the murine neuromuscular synapse relies on long-lasting morphological adaptations

BACKGROUND: In a broad variety of species, muscle contraction is controlled at the neuromuscular junction (NMJ), the peripheral synapse composed of a motor nerve terminal, a muscle specialization, and non-myelinating terminal Schwann cells. While peripheral nerve damage leads to successful NMJ reinn...

Descripción completa

Detalles Bibliográficos
Autores principales: Bermedo-García, Francisca, Zelada, Diego, Martínez, Esperanza, Tabares, Lucía, Henríquez, Juan Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270767/
https://www.ncbi.nlm.nih.gov/pubmed/35804361
http://dx.doi.org/10.1186/s12915-022-01358-4
Descripción
Sumario:BACKGROUND: In a broad variety of species, muscle contraction is controlled at the neuromuscular junction (NMJ), the peripheral synapse composed of a motor nerve terminal, a muscle specialization, and non-myelinating terminal Schwann cells. While peripheral nerve damage leads to successful NMJ reinnervation in animal models, muscle fiber reinnervation in human patients is largely inefficient. Interestingly, some hallmarks of NMJ denervation and early reinnervation in murine species, such as fragmentation and poly-innervation, are also phenotypes of aged NMJs or even of unaltered conditions in other species, including humans. We have reasoned that rather than features of NMJ decline, such cellular responses could represent synaptic adaptations to accomplish proper functional recovery. Here, we have experimentally tackled this idea through a detailed comparative study of the short- and long-term consequences of irreversible (chronic) and reversible (partial) NMJ denervation in the convenient cranial levator auris longus muscle. RESULTS: Our findings reveal that irreversible muscle denervation results in highly fragmented postsynaptic domains and marked ectopic acetylcholine receptor clustering along with significant terminal Schwann cells sprouting and progressive detachment from the NMJ. Remarkably, even though reversible nerve damage led to complete reinnervation after 11 days, we found that more than 30% of NMJs are poly-innervated and around 65% of postsynaptic domains are fragmented even 3 months after injury, whereas synaptic transmission is fully recovered two months after nerve injury. While postsynaptic stability was irreversibly decreased after chronic denervation, this parameter was only transiently affected by partial NMJ denervation. In addition, we found that a combination of morphometric analyses and postsynaptic stability determinations allows discriminating two distinct forms of NMJ fragmentation, stable-smooth and unstable-blurred, which correlate with their regeneration potential. CONCLUSIONS: Together, our data unveil that reversible nerve damage imprints a long-lasting reminiscence in the NMJ that results in the rearrangement of its cellular components. Instead of being predictive of NMJ decline, these traits may represent an efficient adaptive response for proper functional recovery. As such, these features are relevant targets to be considered in strategies aimed to restore motor function in detrimental conditions for peripheral innervation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01358-4.