Cargando…

A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo

Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kastanaki, Elizabeth, Blanco-Touriñán, Noel, Sarazin, Alexis, Sturchler, Alessandra, Gujas, Bojan, Vera-Sirera, Francisco, Agustí, Javier, Rodriguez-Villalon, Antia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270971/
https://www.ncbi.nlm.nih.gov/pubmed/35723181
http://dx.doi.org/10.1242/dev.200403
_version_ 1784744579921084416
author Kastanaki, Elizabeth
Blanco-Touriñán, Noel
Sarazin, Alexis
Sturchler, Alessandra
Gujas, Bojan
Vera-Sirera, Francisco
Agustí, Javier
Rodriguez-Villalon, Antia
author_facet Kastanaki, Elizabeth
Blanco-Touriñán, Noel
Sarazin, Alexis
Sturchler, Alessandra
Gujas, Bojan
Vera-Sirera, Francisco
Agustí, Javier
Rodriguez-Villalon, Antia
author_sort Kastanaki, Elizabeth
collection PubMed
description Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.
format Online
Article
Text
id pubmed-9270971
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Company of Biologists Ltd
record_format MEDLINE/PubMed
spelling pubmed-92709712022-07-13 A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo Kastanaki, Elizabeth Blanco-Touriñán, Noel Sarazin, Alexis Sturchler, Alessandra Gujas, Bojan Vera-Sirera, Francisco Agustí, Javier Rodriguez-Villalon, Antia Development Research Article Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth. The Company of Biologists Ltd 2022-06-27 /pmc/articles/PMC9270971/ /pubmed/35723181 http://dx.doi.org/10.1242/dev.200403 Text en © 2022. Published by The Company of Biologists Ltd https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article
Kastanaki, Elizabeth
Blanco-Touriñán, Noel
Sarazin, Alexis
Sturchler, Alessandra
Gujas, Bojan
Vera-Sirera, Francisco
Agustí, Javier
Rodriguez-Villalon, Antia
A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo
title A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo
title_full A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo
title_fullStr A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo
title_full_unstemmed A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo
title_short A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo
title_sort genetic framework for proximal secondary vein branching in the arabidopsis thaliana embryo
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270971/
https://www.ncbi.nlm.nih.gov/pubmed/35723181
http://dx.doi.org/10.1242/dev.200403
work_keys_str_mv AT kastanakielizabeth ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT blancotourinannoel ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT sarazinalexis ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT sturchleralessandra ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT gujasbojan ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT verasirerafrancisco ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT agustijavier ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT rodriguezvillalonantia ageneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT kastanakielizabeth geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT blancotourinannoel geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT sarazinalexis geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT sturchleralessandra geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT gujasbojan geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT verasirerafrancisco geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT agustijavier geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo
AT rodriguezvillalonantia geneticframeworkforproximalsecondaryveinbranchinginthearabidopsisthalianaembryo