Cargando…

Understanding disposable plastics effects generated from the PCR testing labs during the COVID-19 pandemic

In medical labs, especially in polymerase chain reaction (PCR) testing labs, plastic residues (PCR tubes, pipet tips, falcon tubes, buffer bottles, medical globes, and others) wastes are potential sources of plastic waste. Evidence showed that a single PCR test for COVID-19 diagnosis used 37 g of di...

Descripción completa

Detalles Bibliográficos
Autores principales: Aragaw, Tadele Assefa, Mekonnen, Bassazin Ayalew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271011/
https://www.ncbi.nlm.nih.gov/pubmed/37520800
http://dx.doi.org/10.1016/j.hazadv.2022.100126
Descripción
Sumario:In medical labs, especially in polymerase chain reaction (PCR) testing labs, plastic residues (PCR tubes, pipet tips, falcon tubes, buffer bottles, medical globes, and others) wastes are potential sources of plastic waste. Evidence showed that a single PCR test for COVID-19 diagnosis used 37 g of disposable plastic per sample. Globally, an estimated amount of above 15,000 tons of plastic residue have been generated from the PCRs tests during the COVID-19 pandemic. These plastic residues are mismanaged and dumped with other solid wastes, especially in molecular testing labs (MTLs) from academic institutes such as universities thereby polluting the ecosystem. Plastic wastes from PCR testing labs also contain hazardous chemicals and pathogenic microorganisms. Thus, plastic residues in PCR testing labs are an important add-on source to conventional plastic wastes. In this perspective, research questions on (1) type and characteristics of plastic, (2) quantity of plastic residues as an add-on source to the conventional plastic wastes, (3) prevalence of microplastics generated from PCR testing labs of plastic wastes, (4) handling, disinfection techniques, and management strategies of these plastic residues, (5) PCR test materials as a source of hazardous chemical pollutants, and (6) future environmental pollution threats imposed by genetic material determination were raised. It is suggested that this work will be used as the baseline information in addressing the knowledge gap for improving PCR testing labs plastic waste management, and regulation to control environmental pollution. Understanding these plastics' impacts and risks is crucial for driving predictions and innovative technology processes towards sustainability.