Cargando…
Age group prediction with panoramic radiomorphometric parameters using machine learning algorithms
The aim of this study is to investigate the relationship of 18 radiomorphometric parameters of panoramic radiographs based on age, and to estimate the age group of people with permanent dentition in a non-invasive, comprehensive, and accurate manner using five machine learning algorithms. For the st...
Autores principales: | Lee, Yeon-Hee, Won, Jong Hyun, Auh, Q.-Schick, Noh, Yung-Kyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271070/ https://www.ncbi.nlm.nih.gov/pubmed/35810213 http://dx.doi.org/10.1038/s41598-022-15691-9 |
Ejemplares similares
-
Age‐related radiomorphometric changes on panoramic radiographs
por: Lee, Yeon‐Hee, et al.
Publicado: (2020) -
Advantages of deep learning with convolutional neural network in detecting disc displacement of the temporomandibular joint in magnetic resonance imaging
por: Lee, Yeon-Hee, et al.
Publicado: (2022) -
Assessment of Panoramic Radiomorphometric Indices of the Mandible in a Brazilian Population
por: Alonso, Maria Beatriz C. C., et al.
Publicado: (2011) -
Evaluation of Radiomorphometric Indices in Panoramic Radiograph – A Screening Tool
por: Bajoria, Atul Anand, et al.
Publicado: (2015) -
Radiomorphometric Indices and their Relation to Alveolar Bone Loss: A Panoramic Radiographic Study
por: Bangar, Bhushan R., et al.
Publicado: (2022)