Cargando…
Use of deep learning in the MRI diagnosis of Chiari malformation type I
PURPOSE: To train deep learning convolutional neural network (CNN) models for classification of clinically significant Chiari malformation type I (CM1) on MRI to assist clinicians in diagnosis and decision making. METHODS: A retrospective MRI dataset of patients diagnosed with CM1 and healthy indivi...
Autores principales: | Tanaka, Kaishin W., Russo, Carlo, Liu, Sidong, Stoodley, Marcus A., Di Ieva, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271110/ https://www.ncbi.nlm.nih.gov/pubmed/35199210 http://dx.doi.org/10.1007/s00234-022-02921-0 |
Ejemplares similares
-
Persistent primitive hypoglossal artery associated with Chiari II malformation: Diagnosis and clinical implications
por: Gupta, Mudit, et al.
Publicado: (2010) -
Deep learning regressor model based on nigrosome MRI in Parkinson syndrome effectively predicts striatal dopamine transporter-SPECT uptake
por: Bae, Yun Jung, et al.
Publicado: (2023) -
Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI
por: Cuocolo, Renato, et al.
Publicado: (2020) -
Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation
por: Yasaka, Koichiro, et al.
Publicado: (2021) -
The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations
por: Willems, Peter W. A., et al.
Publicado: (2011)