Cargando…
Learning in deep neural networks and brains with similarity-weighted interleaved learning
Understanding how the brain learns throughout a lifetime remains a long-standing challenge. In artificial neural networks (ANNs), incorporating novel information too rapidly results in catastrophic interference, i.e., abrupt loss of previously acquired knowledge. Complementary Learning Systems Theor...
Autores principales: | Saxena, Rajat, Shobe, Justin L., McNaughton, Bruce L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271163/ https://www.ncbi.nlm.nih.gov/pubmed/35759669 http://dx.doi.org/10.1073/pnas.2115229119 |
Ejemplares similares
-
The Underappreciated Benefits of Interleaving for Category Learning
por: Do, Lan Anh, et al.
Publicado: (2023) -
A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition
por: Thapa, Keshav, et al.
Publicado: (2020) -
Interleaved practice benefits implicit sequence learning and transfer
por: Schorn, Julia M., et al.
Publicado: (2021) -
Effects of interleaved and blocked study on delayed test of category learning generalization
por: Carvalho, Paulo F., et al.
Publicado: (2014) -
Neurons learn by predicting future activity
por: Luczak, Artur, et al.
Publicado: (2022)