Cargando…
Face dissimilarity judgments are predicted by representational distance in morphable and image-computable models
Human vision is attuned to the subtle differences between individual faces. Yet we lack a quantitative way of predicting how similar two face images look and whether they appear to show the same person. Principal component–based three-dimensional (3D) morphable models are widely used to generate sti...
Autores principales: | Jozwik, Kamila M., O’Keeffe, Jonathan, Storrs, Katherine R., Guo, Wenxuan, Golan, Tal, Kriegeskorte, Nikolaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271164/ https://www.ncbi.nlm.nih.gov/pubmed/35767642 http://dx.doi.org/10.1073/pnas.2115047119 |
Ejemplares similares
-
Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments
por: Jozwik, Kamila M., et al.
Publicado: (2017) -
Representational Distance Learning for Deep Neural Networks
por: McClure, Patrick, et al.
Publicado: (2016) -
Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation
por: Mur, Marieke, et al.
Publicado: (2013) -
Repertoire of morphable proteins in an organism
por: Izumi, Keisuke, et al.
Publicado: (2020) -
Inverse MDS: Inferring Dissimilarity Structure from Multiple Item Arrangements
por: Kriegeskorte, Nikolaus, et al.
Publicado: (2012)