Cargando…

C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Amici, David R., Ansel, Daniel J., Metz, Kyle A., Smith, Roger S., Phoumyvong, Claire M., Gayatri, Sitaram, Chamera, Tomasz, Edwards, Stacey L., O’Hara, Brendan P., Srivastava, Shashank, Brockway, Sonia, Takagishi, Seesha R., Cho, Byoung-Kyu, Goo, Young Ah, Kelleher, Neil L., Ben-Sahra, Issam, Foltz, Daniel R., Li, Jian, Mendillo, Marc L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271168/
https://www.ncbi.nlm.nih.gov/pubmed/35776542
http://dx.doi.org/10.1073/pnas.2111262119
_version_ 1784744620526141440
author Amici, David R.
Ansel, Daniel J.
Metz, Kyle A.
Smith, Roger S.
Phoumyvong, Claire M.
Gayatri, Sitaram
Chamera, Tomasz
Edwards, Stacey L.
O’Hara, Brendan P.
Srivastava, Shashank
Brockway, Sonia
Takagishi, Seesha R.
Cho, Byoung-Kyu
Goo, Young Ah
Kelleher, Neil L.
Ben-Sahra, Issam
Foltz, Daniel R.
Li, Jian
Mendillo, Marc L.
author_facet Amici, David R.
Ansel, Daniel J.
Metz, Kyle A.
Smith, Roger S.
Phoumyvong, Claire M.
Gayatri, Sitaram
Chamera, Tomasz
Edwards, Stacey L.
O’Hara, Brendan P.
Srivastava, Shashank
Brockway, Sonia
Takagishi, Seesha R.
Cho, Byoung-Kyu
Goo, Young Ah
Kelleher, Neil L.
Ben-Sahra, Issam
Foltz, Daniel R.
Li, Jian
Mendillo, Marc L.
author_sort Amici, David R.
collection PubMed
description All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.
format Online
Article
Text
id pubmed-9271168
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-92711682022-07-11 C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways Amici, David R. Ansel, Daniel J. Metz, Kyle A. Smith, Roger S. Phoumyvong, Claire M. Gayatri, Sitaram Chamera, Tomasz Edwards, Stacey L. O’Hara, Brendan P. Srivastava, Shashank Brockway, Sonia Takagishi, Seesha R. Cho, Byoung-Kyu Goo, Young Ah Kelleher, Neil L. Ben-Sahra, Issam Foltz, Daniel R. Li, Jian Mendillo, Marc L. Proc Natl Acad Sci U S A Biological Sciences All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease. National Academy of Sciences 2022-07-01 2022-07-05 /pmc/articles/PMC9271168/ /pubmed/35776542 http://dx.doi.org/10.1073/pnas.2111262119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Amici, David R.
Ansel, Daniel J.
Metz, Kyle A.
Smith, Roger S.
Phoumyvong, Claire M.
Gayatri, Sitaram
Chamera, Tomasz
Edwards, Stacey L.
O’Hara, Brendan P.
Srivastava, Shashank
Brockway, Sonia
Takagishi, Seesha R.
Cho, Byoung-Kyu
Goo, Young Ah
Kelleher, Neil L.
Ben-Sahra, Issam
Foltz, Daniel R.
Li, Jian
Mendillo, Marc L.
C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways
title C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways
title_full C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways
title_fullStr C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways
title_full_unstemmed C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways
title_short C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways
title_sort c16orf72/hapstr1 is a molecular rheostat in an integrated network of stress response pathways
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271168/
https://www.ncbi.nlm.nih.gov/pubmed/35776542
http://dx.doi.org/10.1073/pnas.2111262119
work_keys_str_mv AT amicidavidr c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT anseldanielj c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT metzkylea c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT smithrogers c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT phoumyvongclairem c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT gayatrisitaram c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT chameratomasz c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT edwardsstaceyl c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT oharabrendanp c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT srivastavashashank c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT brockwaysonia c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT takagishiseeshar c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT chobyoungkyu c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT gooyoungah c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT kelleherneill c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT bensahraissam c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT foltzdanielr c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT lijian c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways
AT mendillomarcl c16orf72hapstr1isamolecularrheostatinanintegratednetworkofstressresponsepathways