Cargando…
Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia
DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271208/ https://www.ncbi.nlm.nih.gov/pubmed/35759659 http://dx.doi.org/10.1073/pnas.2123227119 |
_version_ | 1784744630479224832 |
---|---|
author | Kogan, Aksinija A. Topper, Michael J. Dellomo, Anna J. Stojanovic, Lora McLaughlin, Lena J. Creed, T. Michael Eberly, Christian L. Kingsbury, Tami J. Baer, Maria R. Kessler, Michael D. Baylin, Stephen B. Rassool, Feyruz V. |
author_facet | Kogan, Aksinija A. Topper, Michael J. Dellomo, Anna J. Stojanovic, Lora McLaughlin, Lena J. Creed, T. Michael Eberly, Christian L. Kingsbury, Tami J. Baer, Maria R. Kessler, Michael D. Baylin, Stephen B. Rassool, Feyruz V. |
author_sort | Kogan, Aksinija A. |
collection | PubMed |
description | DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers. |
format | Online Article Text |
id | pubmed-9271208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-92712082022-12-27 Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia Kogan, Aksinija A. Topper, Michael J. Dellomo, Anna J. Stojanovic, Lora McLaughlin, Lena J. Creed, T. Michael Eberly, Christian L. Kingsbury, Tami J. Baer, Maria R. Kessler, Michael D. Baylin, Stephen B. Rassool, Feyruz V. Proc Natl Acad Sci U S A Biological Sciences DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers. National Academy of Sciences 2022-06-27 2022-07-05 /pmc/articles/PMC9271208/ /pubmed/35759659 http://dx.doi.org/10.1073/pnas.2123227119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Kogan, Aksinija A. Topper, Michael J. Dellomo, Anna J. Stojanovic, Lora McLaughlin, Lena J. Creed, T. Michael Eberly, Christian L. Kingsbury, Tami J. Baer, Maria R. Kessler, Michael D. Baylin, Stephen B. Rassool, Feyruz V. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia |
title | Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia |
title_full | Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia |
title_fullStr | Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia |
title_full_unstemmed | Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia |
title_short | Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia |
title_sort | activating sting1-dependent immune signaling in tp53 mutant and wild-type acute myeloid leukemia |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271208/ https://www.ncbi.nlm.nih.gov/pubmed/35759659 http://dx.doi.org/10.1073/pnas.2123227119 |
work_keys_str_mv | AT koganaksinijaa activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT toppermichaelj activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT dellomoannaj activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT stojanoviclora activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT mclaughlinlenaj activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT creedtmichael activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT eberlychristianl activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT kingsburytamij activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT baermariar activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT kesslermichaeld activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT baylinstephenb activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia AT rassoolfeyruzv activatingsting1dependentimmunesignalingintp53mutantandwildtypeacutemyeloidleukemia |